Vitrification

CRYOTOP®

www.kitazato.co.jp
Vitrification CRYOTOP®

- New Generation Synthetic Media
- Safety Vitrification for Oocytes and Embryos
- Worldwide Leader Open System: Cryotop®
- New Cryotop® SC: Closed System for Storage

CRYOTOP® Survival and Pregnancy rates in human specimen

The Cryotop Method

Cryotop is the special vitrification container consisting of a fine, thin film strip attached to a hard plastic handle for the minimum volume cooling to realize highest cooling & warming rates resulting in over 90% post-thaw survival. The Cryotop method is simple, reliable, universal, safe and easy for anyone. The Cryotop method has been applied to more than 1,000,000 clinical cases for oocytes/embryos as cryopreservation method for these 12 years with unbelievable excellent results in more than 70 countries (1,600 IVF centers). The Cryotop method is the most trustworthy cryopreservation method for oocytes and embryos proved by the best survival rates, and created huge number of safety birth results.

Vitrification Media have been improved with the new components HPC (Hidroxypropyl Cellulose) and Threalose, obtaining synthetic media absolutely free from animal derived protein. This new media shelf life is 6 months from the date of manufacture.
Vitrification Kit
VT601-TOP - Cryotop Safety Kit

1. Vial 1.5 mL of BS (Basic Solution)
2. Vial 1.5 mL of ES (Equilibration Solution)
3. Vial 1.5 mL of VS (Vitrification Solution)
4. Cryotop®
5. Repro Plate

The solutions are provided in vials intended for single use. One kit vitrifies up to 16 oocytes or embryos.

Thawing Kit
VT602-KIT - Cryotop Safety Kit

2. Vial 4.0 mL of TS (Thawing Solution)
1. Vial 4.0 mL of DS (Diluent Solution)
1. Vial 4.0 mL of WS (Washing Solution)
2. 35mm Dish
1. Repro Plate

The solutions are provided in vials intended for single use. One kit warms up to 16 oocytes or embryos.
Vitrification CRYOTOP®

Synthetic Media
Improved media for oocytes and embryos.

VT601 - Vitrification Media
VT602 - Thawing Media

Repro Plate
Designed to follow the Cryotop protocol.

Cryotop®
5 colors for better organization.

Repro Plate - K1 (10 pcs)
Cryotop® (10 pcs)
Cryotop®SC
New Closed System for Storage.
KITAZATO VITRIFICATION ADVANTAGES

1. Valid for all stage of development: oocytes, PN, embryos, blastocysts.
2. Survival Results: over 90%.
3. Clinical Results: equivalent results from fresh and vitrified.
4. Reproducibility: detailed and easy to follow protocol.
5. Accumulation of oocytes: for low responder patients.
7. Egg-Banking: to avoid difficult synchronization donor-recipient.
8. Safety in donor’s programme: to keep quarantine if required.
9. Re-Vitrification: transfer of vitrified embryos from vitrified oocytes.

Composition
- HEPES within Basic Culture Media
- Ethylene Glycol
- Dimethyl Sulfoxide
- Trehalose
- Hydroxypropyl Cellulose
- Gentamicin

Quality Control
- pH : 7.2 - 7.6
- Osmolarity
- Endotoxin : <0.25EU/mL by LAL methodology
- Sterility (Bacteria, Fungi): current USP Sterility Test <71>
- MEA (Mouse Embryo Assay): One cell assay ≥80% after 96 hours
Clinical References

- Cobo A., Outcome of cryotransfer of embryos developed from vitrified oocytes: double vitrification has no impact on delivery rates. Fertility & Sterility, 2013.

- Chang C., Prospective controlled study to evaluate laboratory and clinical outcomes of oocyte vitrification obtained in in vitro fertilization patients aged 30 to 39 years. Fertility & Sterility, 2013.


- Zhu D., Vitrified-warmed blastocyst transfer cycles yield higher pregnancy and implantation rates compared with fresh blastocyst transfer cycles-time for a new embryo transfer strategy? Fertility & Sterility, 2011.

- Trokudes KM., Comparison outcome of fresh and vitrified donor oocytes in an egg-sharing donation program. Fertility & Sterility, 2011.

- Lin TK., Cryotop vitrification as compared to conventional slow freezing for human embryos at the cleavage stage: survival and outcomes. Taiwan J Obstet Gynecol, 2010.

- Inoue F., Hydroxypropyl Cellulose as a macromolecular supplement for cryopreservation by vitrification of bovine oocytes and blastocysts and human oocytes. ESHRE and ASRM 2011.


- Inoue F., High post-warm survival of bovine oocytes vitrified with serum-free medium containing hydroxypropyl cellulose. Low Temp. Med. 2009


- Cobo A., Comparison of concomitant outcome achieved with fresh and cryopreserved donor oocytes vitrified by the Cryotop method. Fertility & Sterility, 2008.